Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Clin Chim Acta ; 539: 144-150, 2023 Jan 15.
Article in English | MEDLINE | ID: covidwho-2158555

ABSTRACT

BACKGROUND AND AIM: Existing real-time reverse transcriptase PCR (RT-qPCR) has certain limitations for the point-of-care detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) since it requires sophisticated instruments, reagents and skilled laboratory personnel. In this study, we evaluated an assay termed the reverse transcriptase-polymerase spiral reaction (RT-PSR) for rapid and visual detection of SARS-CoV-2. METHODS: The RT-PSR assay was optimized using RdRp gene and evaluated for the detection of SARS-CoV-2. The time of 60min and a temperature of 63°C was optimized for targeting the RNA-dependent RNA polymerase gene of SARS-CoV-2. The sensitivity of the assay was evaluated by diluting the in-vitro transcribed RNA, which amplifies as low as ten copies. RESULTS: The specific primers designed for this assay showed 100% specificity and did not react when tested with other lung infection-causing viruses and bacteria. The optimized assay was validated with 190 clinical samples in two phases, using automated RTPCR based TrueNat test, and the results were comparable. CONCLUSIONS: The RT-PSR assay can be considered for rapid and sensitive detection of SARS-CoV-2, particularly in resource-limited settings. To our knowledge, there is as yet no RT-PSR-based kit developed for SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19 Testing , RNA-Directed DNA Polymerase/genetics , Clinical Laboratory Techniques/methods , Sensitivity and Specificity , Reverse Transcriptase Polymerase Chain Reaction , Real-Time Polymerase Chain Reaction , RNA, Viral/genetics
2.
Rev Med Virol ; 32(2): e2274, 2022 03.
Article in English | MEDLINE | ID: covidwho-1293326

ABSTRACT

The coronavirus disease 2019 (COVID-19) is a global pandemic caused by a novel coronavirus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To date, the virus has been detected in 219 countries of the world. Therefore, managing the disease becomes the priority, in which detecting the presence of the virus is a crucial step. Presently, real-time RT polymerase chain reaction (RT-qPCR) is considered a gold standard nucleic acid amplification test (NAAT). The test protocol of RT-qPCR is complicated, places high demands on equipment, testing reagents, research personnel skills and is expensive. Therefore, simpler point-of-care (POC) tests are needed to accelerate clinical decision-making and take some of the workload from centralized test laboratories. Various isothermal amplification-based assays have been developed for the sensitive detection of different microorganisms, and recently some of them have been applied for detection of SARS-CoV-2. These do not require any programable thermocycler, can produce the results in a single temperature, and therefore, are considered simple. Unlike RT-qPCR, these methods are highly sensitive, specific, less time-consuming, simple and affordable, and can be used as POC diagnostic kit for COVID-19. In this review, we have discussed the potential of isothermal amplification-based assays as an alternative to RT-qPCR for the detection of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Pandemics , Point-of-Care Testing , RNA, Viral , SARS-CoV-2/genetics
3.
Appl Microbiol Biotechnol ; 105(2): 441-455, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1006413

ABSTRACT

COVID-19 is a disease caused by SARS-CoV-2 capable of causing mild to severe infections in humans. Since its first appearance in China in December 2019, the pandemic has spread rapidly throughout the world. Despite considerable efforts made to contain the disease, the virus has continued its prevalence in many countries with varying degrees of clinical manifestations. To contain this pandemic, collaborative approach involving accurate diagnosis, epidemiology, surveillance, and prophylaxis is essential. However, proper diagnosis using rapid technologies plays a crucial role. With increasing incidence of COVID-19 cases, the accurate and early detection of the SARS-CoV-2 is need of the hour for effective prevention and management of COVID-19 cases as well as to curb its spread. RT-qPCR assay is considered to be the gold standard for the early detection of virus, but this protocol has limited application to use as bedside test because of its technical complexity. To address these challenges, several POC assays have been developed to facilitate the COVID-19 diagnosis outside the centralized testing laboratories as well to accelerate the clinical decision making with a least turnaround time. Hence, in this report, we review different nucleic acid-based and serological techniques available for the diagnosis and effective prevention of COVID-19. KEY POINTS : • Provides comprehensive information on the different diagnostic tools available for COVID-19 • Nucleic acid based tests or antigen detection tests are used for diagnostic purpose • Accurate diagnosis is essential for the efficient management of COVID-19.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19 Serological Testing/methods , COVID-19/diagnosis , COVID-19/prevention & control , Antibodies, Viral/blood , COVID-19/virology , COVID-19 Nucleic Acid Testing/trends , COVID-19 Serological Testing/trends , Humans , RNA, Viral/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity
4.
Virus Res ; 291: 198222, 2021 01 02.
Article in English | MEDLINE | ID: covidwho-912664

ABSTRACT

The envelope glycoprotein (E) is the smallest structural component of SARS-CoVs; plays an essential role in the viral replication starting from envelope formation to assembly. The in silico analysis of 2086 whole genome sequences from India performed in this study provides the first observation on the extensive deletion of amino acid residues in the C-terminal region of the envelope glycoprotein in 34 Indian SARS-CoV-2 genomes. These amino acid deletions map to the homopentameric interface and PDZ binding motif (PBM) present in the C-terminal region of E protein as well as immediately after the reverse primer binding region as per Charité protocol in 26 of these genomes, hence, their detection through RT-qPCR may not be hampered and therefore E gene-based RT-qPCR would still detect these isolates. Eight genomes from the State of Odisha had deletion even in the primer binding site. It is possible that the deletions in the C-terminal region of E protein of these genomes are a result of adapting to a newer geographical area and host. The information on the clinical status was available only for 9 out of 34 cases and these were asymptomatic. However, further studies are indispensable to understand the functional consequences of amino acid deletion in the C terminal region of SARS-CoV-2 envelope protein in the viral pathogenesis and host adaptation.


Subject(s)
Coronavirus Envelope Proteins/genetics , SARS-CoV-2/genetics , Adult , Amino Acid Sequence , Computer Simulation , Coronavirus Envelope Proteins/immunology , Epitopes, B-Lymphocyte , Female , Gene Deletion , Genome, Viral , Humans , India , Male , Middle Aged , Real-Time Polymerase Chain Reaction , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL